
MLPerf Inference Benchmark

Vijay Janapa Reddi,∗ Christine Cheng,† David Kanter,‡ Peter Mattson,§
Guenther Schmuelling,¶ Carole-Jean Wu,‖ Brian Anderson,§ Maximilien Breughe,∗∗

Mark Charlebois,†† William Chou,†† Ramesh Chukka,† Cody Coleman,‡‡ Sam Davis,
x

Pan Deng,
xxvii

Greg Diamos,
xi

Jared Duke,§ Dave Fick,
xii

J. Scott Gardner,
xiii

Itay Hubara,
xiv

Sachin Idgunji,∗∗ Thomas B. Jablin,§ Jeff Jiao,
xv

Tom St. John,
xxii

Pankaj Kanwar,§
David Lee,

xvi
Jeffery Liao,

xvii
Anton Lokhmotov,

xviii
Francisco Massa,‖ Peng Meng,

xxvii

Paulius Micikevicius,∗∗ Colin Osborne,
xix

Gennady Pekhimenko,
xx

Arun Tejusve Raghunath Rajan,†
Dilip Sequeira,∗∗ Ashish Sirasao,

xxi
Fei Sun,

xxiii
Hanlin Tang,† Michael Thomson,

xxiv

Frank Wei,
xxv

Ephrem Wu,
xxi

Lingjie Xu,
xxviii

Koichi Yamada,† Bing Yu,
xvi

George Yuan,∗∗ Aaron Zhong,
xv

Peizhao Zhang,‖ Yuchen Zhou
xxvi

∗Harvard University †Intel ‡Real World Insights §Google ¶Microsoft ‖Facebook ∗∗NVIDIA ††Qualcomm
‡‡Stanford University

x
Myrtle

xi
Landing AI

xii
Mythic

xiii
Advantage Engineering

xiv
Habana Labs

xv
Alibaba T-Head

xvi
Facebook (formerly at MediaTek)

xvii
OPPO (formerly at Synopsys)

xviii
dividiti

xix
Arm

xx
University of Toronto & Vector Institute

xxi
Xilinx

xxii
Tesla

xxiii
Alibaba (formerly at Facebook)

xxiv
Centaur Technology

xxv
Alibaba Cloud

xxvi
General Motors

xxvii
Tencent

xxviii
Biren Research (formerly at Alibaba)

Abstract—Machine-learning (ML) hardware and software sys-
tem demand is burgeoning. Driven by ML applications, the
number of different ML inference systems has exploded. Over
100 organizations are building ML inference chips, and the
systems that incorporate existing models span at least three
orders of magnitude in power consumption and five orders of
magnitude in performance; they range from embedded devices
to data-center solutions. Fueling the hardware are a dozen or
more software frameworks and libraries. The myriad combina-
tions of ML hardware and ML software make assessing ML-
system performance in an architecture-neutral, representative,
and reproducible manner challenging. There is a clear need
for industry-wide standard ML benchmarking and evaluation
criteria. MLPerf Inference answers that call. In this paper, we
present our benchmarking method for evaluating ML inference
systems. Driven by more than 30 organizations as well as more
than 200 ML engineers and practitioners, MLPerf prescribes a
set of rules and best practices to ensure comparability across
systems with wildly differing architectures. The first call for
submissions garnered more than 600 reproducible inference-
performance measurements from 14 organizations, representing
over 30 systems that showcase a wide range of capabilities. The
submissions attest to the benchmark’s flexibility and adaptability.

Index Terms—Machine Learning, Inference, Benchmarking

I. INTRODUCTION

Machine learning (ML) powers a variety of applications

from computer vision ([20], [18], [34], [29]) and natural-

language processing ([50], [16]) to self-driving cars ([55], [6])

and autonomous robotics [32]. Although ML-model training

has been a development bottleneck and a considerable ex-

pense [4], inference has become a critical workload. Models

can serve as many as 200 trillion queries and perform over

6 billion translations a day [31]. To address these growing

computational demands, hardware, software, and system de-

velopers have focused on inference performance for a variety

of use cases by designing optimized ML hardware and soft-

ware. Estimates indicate that over 100 companies are targeting

specialized inference chips [27]. By comparison, only about

20 companies are targeting training chips [48].

Each ML system takes a unique approach to inference,

trading off latency, throughput, power, and model quality. The

result is many possible combinations of ML tasks, models,

data sets, frameworks, tool sets, libraries, architectures, and

inference engines, making the task of evaluating inference

performance nearly intractable. The spectrum of tasks is broad,

including but not limited to image classification and localiza-

tion, object detection and segmentation, machine translation,

automatic speech recognition, text to speech, and recommen-

dations. Even for a specific task, such as image classification,

many ML models are viable. These models serve in a variety

of scenarios from taking a single picture on a smartphone to

continuously and concurrently detecting pedestrians through

multiple cameras in an autonomous vehicle. Consequently,

ML tasks have vastly different quality requirements and real-

time processing demands. Even the implementations of the

model’s functions and operations can be highly framework

specific, and they increase the complexity of the design task.

To quantify these tradeoffs, the ML field needs a benchmark

that is architecturally neutral, representative, and reproducible.

Both academic and industrial organizations have developed

ML inference benchmarks. Examples of prior art include

AIMatrix [3], EEMBC MLMark [17], and AIXPRT [43] from

industry, as well as AI Benchmark [23], TBD [57], Fathom [2],

and DAWNBench [14] from academia. Each one has made

substantial contributions to ML benchmarking, but they were

developed without industry-wide input from ML-system de-

signers. As a result, there is no consensus on representative

machine learning models, metrics, tasks, and rules.

446

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00045

In this paper, we present MLPerf Inference, a standard ML

inference benchmark suite with proper metrics and a bench-

marking method (that complements MLPerf Training [35]) to

fairly measure the inference performance of ML hardware,

software, and services. Industry and academia jointly devel-

oped the benchmark suite and its methodology using input

from researchers and developers at more than 30 organizations.

Over 200 ML engineers and practitioners contributed to the

effort. MLPerf Inference is a consensus on the best bench-

marking techniques, forged by experts in architecture, systems,

and machine learning. We explain why designing the right

ML benchmarking metrics, creating realistic ML inference

scenarios, and standardizing the evaluation methods enables

realistic performance optimization for inference quality.
1© We picked representative workloads for reproducibil-

ity and accessibility. The ML ecosystem is rife with models.

Comparing and contrasting ML-system performance across

these models is nontrivial because they vary dramatically in

model complexity and execution characteristics. In addition,

a name such as ResNet-50 fails to uniquely or portably de-

scribe a model. Consequently, quantifying system-performance

improvements with an unstable baseline is difficult.

A major contribution of MLPerf is selection of represen-

tative models that permit reproducible measurements. Based

on industry consensus, MLPerf Inference comprises models

that are mature and have earned community support. Because

the industry has studied them and can build efficient systems,

benchmarking is accessible and provides a snapshot of ML-

system technology. MLPerf models are also open source,

making them a potential research tool.
2© We identified scenarios for realistic evaluation. ML

inference systems range from deeply embedded devices to

smartphones to data centers. They have a variety of real-world

applications and many figures of merit, each requiring multiple

performance metrics. The right metrics, reflecting production

use cases, allow not just MLPerf but also publications to show

how a practical ML system would perform.

MLPerf Inference consists of four evaluation scenarios:

single-stream, multistream, server, and offline. We arrived

at them by surveying MLPerf’s broad membership, which

includes both customers and vendors. These scenarios rep-

resent many critical inference applications. We show that

performance can vary drastically under these scenarios and

their corresponding metrics. MLPerf Inference provides a way

to simulate the realistic behavior of the inference system under

test; such a feature is unique among AI benchmarks.
3© We prescribe target qualities and tail-latency bounds

in accordance with real-world use cases. Quality and perfor-

mance are intimately connected for all forms of ML. System

architectures occasionally sacrifice model quality to reduce

latency, reduce total cost of ownership (TCO), or increase

throughput. The tradeoffs among accuracy, latency, and TCO

are application specific. Trading 1% model accuracy for 50%

lower TCO is prudent when identifying cat photos, but it is

risky when detecting pedestrians for autonomous vehicles.

To reflect this aspect of real deployments, MLPerf defines

model-quality targets. We established per-model and scenario

targets for inference latency and model quality. The latency

bounds and target qualities are based on input gathered from

ML-system end users and ML practitioners. As MLPerf im-

proves these parameters in accordance with industry needs, the

broader research community can track them to stay relevant.

4© We set permissive rules that allow users to show
both hardware and software capabilities. The community

has embraced a variety of languages and libraries, so MLPerf

Inference is a semantic-level benchmark. We specify the task

and the rules, but we leave implementation to submitters.

Our benchmarks allow submitters to optimize the reference

models, run them through their preferred software tool chain,

and execute them on their hardware of choice. Thus, MLPerf

Inference has two divisions: closed and open. Strict rules

govern the closed division, which addresses the lack of a stan-

dard inference-benchmarking workflow. The open division, on

the other hand, allows submitters to change the model and

demonstrate different performance and quality targets.

5© We present an inference-benchmarking method that
allows the models to change frequently while preserving
the aforementioned contributions. ML evolves quickly, so

the challenge for any benchmark is not performing the tasks,

but implementing a method that can withstand rapid change.

MLPerf Inference focuses heavily on the benchmark’s mod-

ular design to make adding new models and tasks less costly

while preserving the usage scenarios, target qualities, and

infrastructure. As we show in Section VI-E, our design has

allowed users to add new models easily. We plan to extend

the scope to include more areas and tasks. We are working

to add new models (e.g., recommendation and time series),

new scenarios (e.g., “burst” mode), better tools (e.g., a mobile

application), and better metrics (e.g., timing preprocessing) to

better reflect the performance of the whole ML pipeline.

Impact. MLPerf Inference (version 0.5) was put to the test

in October 2019. We received over 600 submissions from 14

organizations, spanning various tasks, frameworks, and plat-

forms. Audit tests automatically evaluated the submissions and

cleared 595 of them as valid. The results show a four-orders-

of-magnitude performance variation ranging from embedded

devices and smartphones to data-center systems, demonstrat-

ing how the different metrics and inference scenarios are useful

in more robustly accessing AI inference accelerators.

Staying up to date. Because ML is still evolving, we

established a process to regularly maintain and update MLPerf

Inference. See mlperf.org for the latest benchmarks, rules etc.

II. INFERENCE-BENCHMARKING CHALLENGES

A useful ML benchmark must overcome three critical

challenges: the diversity of models, the variety of deployment

scenarios, and the array of inference systems.

A. Diversity of Models

Choosing the right models for a benchmark is difficult; the

choice depends on the application. For example, pedestrian

447

Fig. 1. An example of ML-model diversity for image classification (plot
from [9]). No single model is optimal; each one presents a design tradeoff
between accuracy, memory requirements, and computational complexity.

detection in autonomous vehicles has a much higher accu-

racy requirement than does labeling animals in photographs,

owing to the different consequences of incorrect predictions.

Similarly, quality-of-service (QoS) requirements for machine

learning inference vary by several orders of magnitude from

effectively no latency constraint for offline processes to mil-

liseconds for real-time applications.

Covering the vast design space necessitates careful selection

of models that represent realistic scenarios. But even for a

single ML task, such as image classification, numerous models

present different tradeoffs between accuracy and computa-

tional complexity, as Figure 1 shows. These models vary

tremendously in compute and memory requirements (e.g., a

50× difference in gigaflops), while the corresponding Top-

1 accuracy ranges from 55% to 83% [9]. This variation

creates a Pareto frontier rather than one optimal choice. Even

a small accuracy change (e.g., a few percent) can drasti-

cally alter the computational requirements (e.g., by 5–10×).

For example, SE-ResNeXt-50 ([22], [54]) and Xception [13]

achieve roughly the same accuracy (∼79%) but exhibit a 2×
computational difference.

B. Deployment-Scenario Diversity

In addition to accuracy and computational complexity, a

representative ML benchmark must take into account the

input data’s availability and arrival pattern across a variety

of application-deployment scenarios. For example, in offline

batch processing, such as photo categorization, all the data

may be readily available in (network) storage, allowing accel-

erators to reach and maintain peak performance. By contrast,

Fig. 2. The diversity of options at every level of the stack, along with the
combinations across the layers, make benchmarking inference systems hard.

translation, image tagging, and other tasks experience variable

arrival patterns based on end-user traffic.

Similarly, real-time applications such as augmented reality

and autonomous vehicles handle a constant flow of data rather

than having it all in memory. Although the same model

architecture could serve in each scenario, data batching and

similar optimizations may be inapplicable, leading to drasti-

cally different performance. Timing the on-device inference

latency alone fails to reflect the real-world requirements.

C. Inference-System Diversity

The possible combinations of inference applications, data

sets, models, machine-learning frameworks, tool sets, libraries,

systems, and platforms are numerous, further complicating

systematic and reproducible benchmarking. Figure 2 shows

the wide breadth and depth of the ML space. The hardware

and software side both exhibit substantial complexity.

On the software side, about a dozen ML frameworks

commonly serve for developing deep-learning models, such

as Caffe/Caffe2 [26], Chainer [49], CNTK [46], Keras [12],

MXNet [10], TensorFlow [1], and PyTorch [41]. Indepen-

dently, there are also many optimized libraries, such as

cuDNN [11], Intel MKL [25], and FBGEMM [28], supporting

various inference run times, such as Apple CoreML [5], Intel

OpenVino [24], NVIDIA TensorRT [39], ONNX Runtime [7],

Qualcomm SNPE [44], and TF-Lite [30]. Each combination

has idiosyncrasies that make supporting the most current

neural-network model architectures a challenge. Consider the

non-maximum-suppression (NMS) operator for object detec-

tion. When training object-detection models in TensorFlow, the

regular NMS operator smooths out imprecise bounding boxes

for a single object. But this implementation is unavailable

in TensorFlow Lite, which is tailored for mobile and instead

implements fast NMS. As a result, when converting the model

from TensorFlow to TensorFlow Lite, the accuracy of SSD-

MobileNet-v1 decreases from 23.1% to 22.3% mAP. Such

subtle differences make it hard to port models exactly from

one framework to another.

On the hardware side, platforms are tremendously diverse,

ranging from familiar processors (e.g., CPUs, GPUs, and

448

TABLE I
ML TASKS IN MLPERF INFERENCE V0.5. EACH ONE REFLECTS CRITICAL COMMERCIAL AND RESEARCH USE CASES FOR A LARGE CLASS OF

SUBMITTERS, AND TOGETHER THEY COVER A BROAD SET OF COMPUTING MOTIFS (E.G., CNNS AND RNNS).

AREA TASK REFERENCE MODEL DATA SET QUALITY TARGET

VISION IMAGE CLASSIFICATION (HEAVY)
RESNET-50 V1.5

25.6M PARAMETERS

8.2 GOPS / INPUT

IMAGENET (224X224) 99% OF FP32 (76.456%) TOP-1 ACCURACY

VISION IMAGE CLASSIFICATION (LIGHT)
MOBILENET-V1 224
4.2M PARAMETERS

1.138 GOPS / INPUT

IMAGENET (224X224) 98% OF FP32 (71.676%) TOP-1 ACCURACY

VISION OBJECT DETECTION (HEAVY)
SSD-RESNET-34

36.3M PARAMETERS

433 GOPS / INPUT

COCO (1,200X1,200) 99% OF FP32 (0.20 MAP)

VISION OBJECT DETECTION (LIGHT)
SSD-MOBILENET-V1
6.91M PARAMETERS

2.47 GOPS / INPUT

COCO (300X300) 99% OF FP32 (0.22 MAP)

LANGUAGE MACHINE TRANSLATION
GNMT

210M PARAMETERS
WMT16 EN-DE 99% OF FP32 (23.9 SACREBLEU)

DSPs) to FPGAs, ASICs, and exotic accelerators such as

analog and mixed-signal processors. Each platform comes

with hardware-specific features and constraints that enable or

disrupt performance depending on the model and scenario.

III. BENCHMARK DESIGN

Combining model diversity with the range of software

systems presents a unique challenge to deriving a robust

ML benchmark that meets industry needs. To overcome that

challenge, we adopted a set of principles for developing a

robust yet flexible offering based on community input. In this

section, we describe the benchmarks, the quality targets, and

the scenarios under which the ML systems can be evaluated.

A. Representative, Broadly Accessible Workloads

Designing ML benchmarks is different from designing tra-

ditional non-ML benchmarks. MLPerf defines high-level tasks

(e.g., image classification) that a machine-learning system can

perform. For each we provide one or more canonical reference

models in a few widely used frameworks. Any implementation

that is mathematically equivalent to the reference model is

considered valid, and certain other deviations (e.g., numerical

formats) are also allowed. For example, a fully connected

layer can be implemented with different cache-blocking and

evaluation strategies. Consequently, submitted results require

optimizations to achieve good performance.

A reference model and a valid class of equivalent im-

plementations gives most ML systems freedom while still

enabling relevant comparisons. MLPerf provides reference

models using 32-bit floating-point weights and, for conve-

nience, carefully implemented equivalent models to address

three formats: TensorFlow [1], PyTorch [41], and ONNX [7].

As Table I illustrates, we chose an initial set of vision

and language tasks along with associated reference models.

Together, vision and translation serve widely across computing

systems, from edge devices to cloud data centers. Mature

and well-behaved reference models with different architectures

(e.g., CNNs and RNNs) were available, too.

Image classification. Many commercial applications em-

ploy image classification, which is a de facto standard for

evaluating ML-system performance. A classifier network takes

an image and selects the class that best describes it. Example

applications include photo searches, text extraction, and indus-

trial automation, such as object sorting and defect detection.

We use the ImageNet 2012 data set [15], crop the images to

224x224 in preprocessing, and measure Top-1 accuracy.

We selected two models: a computationally heavyweight

model that is more accurate and a computationally lightweight

model that is faster but less accurate. The heavyweight model,

ResNet-50 v1.5 ([20], [37]), comes directly from the MLPerf

Training suite to maintain alignment. ResNet-50 is the most

common network for performance claims. Unfortunately, it

has multiple subtly different implementations that make most

comparisons difficult. We specifically selected ResNet-50 v1.5

to ensure useful comparisons and compatibility across major

frameworks. This network exhibits good reproducibility, mak-

ing it a low-risk choice.

The lightweight model, MobileNet-v1-224 [21], employs

smaller, depth-wise-separable convolutions to reduce the com-

plexity and computational burden. MobileNet networks offer

varying compute and accuracy options—we selected the full-

width, full-resolution MobileNet-v1-1.0-224. It reduces the

parameters by 6.1× and the operations by 6.8× compared

with ResNet-50 v1.5. We evaluated both MobileNet-v1 and

MobileNet-v2 [45] for the MLPerf Inference v0.5 suite, se-

lecting the former because of its wider adoption.

Object detection. Object detection is a vision task that

determines the coordinates of bounding boxes around objects

in an image and then classifies those boxes. Implementations

typically use a pretrained image-classifier network as a back-

bone or feature extractor, then perform regression for localiza-

tion and bounding-box selection. Object detection is crucial

for automotive tasks, such as detecting hazards and analyzing

traffic, and for mobile-retail tasks, such as identifying items

in a picture. We chose the COCO data set [33] with both a

lightweight model and a heavyweight model.

449

TABLE II
SCENARIO DESCRIPTION AND METRICS. EACH SCENARIO TARGETS A REAL-WORLD USE CASE BASED ON CUSTOMER AND VENDOR INPUT.

SCENARIO QUERY GENERATION METRIC SAMPLES/QUERY EXAMPLES

SINGLE-STREAM (SS) SEQUENTIAL 90TH-PERCENTILE LATENCY 1
TYPING AUTOCOMPLETE,

REAL-TIME AR

MULTISTREAM (MS) ARRIVAL INTERVAL WITH DROPPING
NUMBER OF STREAMS

SUBJECT TO LATENCY BOUND
N

MULTICAMERA DRIVER ASSISTANCE,
LARGE-SCALE AUTOMATION

SERVER (S) POISSON DISTRIBUTION
QUERIES PER SECOND

SUBJECT TO LATENCY BOUND
1 TRANSLATION WEBSITE

OFFLINE (O) BATCH THROUGHPUT AT LEAST 24,576 PHOTO CATEGORIZATION

Similar to image classification, we selected two models.

Our small model uses the 300x300 image size, which is

typical of resolutions in smartphones and other compact

devices. For the larger model, we upscale the data set to

more closely represent the output of a high-definition image

sensor (1.44 MP total). The choice of the larger input size

is based on community feedback, especially from automotive

and industrial-automation customers. The quality metric for

object detection is mean average precision (mAP).

The heavyweight object detector’s reference model is

SSD [34] with a ResNet-34 backbone, which also comes

from our training benchmark. The lightweight object detector’s

reference model uses a MobileNet-v1-1.0 backbone, which is

more typical for constrained computing environments. We se-

lected the MobileNet feature detector on the basis of feedback

from the mobile and embedded communities.

Translation. Neural machine translation (NMT) is pop-

ular in natural-language processing. NMT models translate

a sequence of words from a source language to a target

language and appear in translation applications and services.

Our translation data set is WMT16 EN-DE [52]. The quality

measurement is the Bilingual Evaluation Understudy (BLEU)

score [40], implemented using SacreBLEU [42]. Our reference

model is GNMT [53], which employs a well-established

recurrent-neural-network (RNN) architecture and is part of the

training benchmark. RNNs are popular for sequential and time-

series data, so including GNMT ensures our reference suite

captures a variety of compute motifs.

B. Robust Quality Targets

Quality and performance are intimately connected for all

forms of machine learning. Although the starting point for

inference is a pretrained reference model that achieves a target

quality, many system architectures can sacrifice model quality

to reduce latency, reduce total cost of ownership (TCO), or

increase throughput. The tradeoffs between accuracy, latency,

and TCO are application specific. Trading 1% model accuracy

for 50% lower TCO is prudent when identifying cat photos,

but it is less so during online pedestrian detection. To reflect

this important aspect, we established per-model quality targets.

We require that almost all implementations achieve a quality

target within 1% of the FP32 reference model’s accuracy.

(For example, the ResNet-50 v1.5 model achieves 76.46%

Top-1 accuracy, and an equivalent model must achieve at

least 75.70% Top-1 accuracy.) Initial experiments, however,

showed that for mobile-focused networks—MobileNet and

SSD-MobileNet—the accuracy loss was unacceptable without

retraining. We were unable to proceed with the low accuracy as

performance benchmarking would become unrepresentative.

To address the accuracy drop, we took three steps. First,

we trained the MobileNet models for quantization-friendly

weights, enabling us to narrow the quality window to 2%.

Second, to reduce the training sensitivity of MobileNet-based

submissions, we provided equivalent MobileNet and SSD-

MobileNet implementations quantized to an 8-bit integer

format. Third, for SSD-MobileNet, we reduced the quality

requirement to 22.0 mAP to account for the challenges of

using a MobileNet backbone.

To improve the submission comparability, we disallow re-

training. Our prior experience and feasibility studies confirmed

that for 8-bit integer arithmetic, which was an expected

deployment path for many systems, the ∼1% relative-accuracy

target was easily achievable without retraining.

C. Realistic End-User Scenarios

ML applications have a variety of usage models and many

figures of merit, which in turn require multiple performance

metrics. For example, the figure of merit for an image-

recognition system that classifies a video camera’s output will

be entirely different than for a cloud-based translation system.

To address these scenarios, we surveyed MLPerf’s broad

membership, which includes both customers and vendors. On

the basis of that feedback, we identified four scenarios that

represent many critical inference applications: single-stream,

multistream, server, and offline. These scenarios emulate the

ML-workload behavior of mobile devices, autonomous vehi-

cles, robotics, and cloud-based setups (Table II).

Single-stream. The single-stream scenario represents one

inference-query stream with a query sample size of 1, re-

flecting the many client applications where responsiveness is

critical. An example is offline voice transcription on Google’s

Pixel 4 smartphone. To measure performance, we inject a

single query into the inference system; when the query is

complete, we record the completion time and inject the next

query. The metric is the query stream’s 90th-percentile latency.

Multistream. The multistream scenario represents applica-

tions with a stream of queries, but each query comprises multi-

ple inferences, reflecting a variety of industrial-automation and

remote-sensing tasks. For example, many autonomous vehicles

analyze frames from multiple cameras simultaneously. To

450

TABLE III
LATENCY CONSTRAINTS IN THE MULTISTREAM AND SERVER SCENARIOS.

TASK
MULTISTREAM
ARRIVAL TIME

SERVER QOS
CONSTRAINT

IMAGE CLASSIFICATION (HEAVY) 50 MS 15 MS

IMAGE CLASSIFICATION (LIGHT) 50 MS 10 MS

OBJECT DETECTION (HEAVY) 66 MS 100 MS

OBJECT DETECTION (LIGHT) 50 MS 10 MS

MACHINE TRANSLATION 100 MS 250 MS

model a concurrent scenario, we send a new query comprising

N input samples at a fixed time interval (e.g., 50 ms). The

interval is benchmark specific and also acts as a latency

bound that ranges from 50 to 100 milliseconds. If the system

is available, it processes the incoming query. If it is still

processing the prior query in an interval, it skips that interval

and delays the remaining queries by one interval. No more than

1% of the queries may produce one or more skipped intervals.

A query’s N input samples are contiguous in memory, which

accurately reflects production input pipelines and avoids penal-

izing systems that would otherwise require copying of samples

to a contiguous memory region before starting inference. The

performance metric is the integer number of streams that the

system supports while meeting the QoS requirement.

Server. The server scenario represents online applications

where query arrival is random and latency is important. Almost

every consumer-facing website is a good example, including

services such as online translation from Baidu, Google, and

Microsoft. For this scenario, queries have one sample each, in

accordance with a Poisson distribution. The system under test

responds to each query within a benchmark-specific latency

bound that varies from 15 to 250 milliseconds. No more than

1% of queries may exceed the latency bound for the vision

tasks and no more than 3% may do so for translation. The

server scenario’s performance metric is the Poisson parameter

that indicates the queries-per-second (QPS) achievable while

meeting the QoS requirement.

Offline. The offline scenario represents batch-processing ap-

plications where all data is immediately available and latency

is unconstrained. An example is identifying the people and

locations in a photo album. For this scenario, we send a single

query that includes all sample-data IDs to be processed, and

the system is free to process the input data in any order. Similar

to the multistream scenario, neighboring samples in the query

are contiguous in memory. The metric for the offline scenario

is throughput measured in samples per second.

For the multistream and server scenarios, latency is a critical

component of the system behavior and constrains various

performance optimizations. For example, most inference sys-

tems require a minimum (and architecture-specific) batch size

to fully utilize the underlying computational resources. But

the query arrival rate in servers is random, so they must

optimize for tail latency and potentially process inferences

with a suboptimal batch size.

Table III shows the latency constraints for each task in

TABLE IV
QUERY REQUIREMENTS FOR STATISTICAL CONFIDENCE. ALL RESULTS

MUST MEET THE MINIMUM LOADGEN SCENARIO REQUIREMENTS.

TAIL-LATENCY
PERCENTILE

CONFIDENCE
INTERVAL

ERROR
MARGIN

INFERENCES
ROUNDED

INFERENCES

90% 99% 0.50% 23,886 3× 213 = 24, 576
95% 99% 0.25% 50,425 7× 213 = 57, 344
99% 99% 0.05% 262,742 33× 213 = 270, 336

MLPerf Inference v0.5. As with other aspects of the bench-

mark, we selected these constraints on the basis of feasibility

and community consultation. The multistream scenario’s ar-

rival times for most vision tasks correspond to a frame rate

of 15–20 Hz, which is a minimum for many applications. The

server scenario’s QoS constraints derive from estimates of the

inference timing budget given an overall user latency target.

D. Statistically Confident Tail-Latency Bounds

Each task and scenario combination requires a minimum

number of queries to ensure results are statistically robust

and adequately capture steady-state system behavior. That

number is determined by the tail-latency percentile, the desired

margin, and the desired confidence interval. Confidence is the

probability that a latency bound is within a particular margin

of the reported result. We chose a 99% confidence bound

and set the margin to a value much less than the difference

between the tail-latency percentage and 100%. Conceptually,

that margin ought to be relatively small. Thus, our selection

is one-twentieth of the difference between the tail-latency

percentage and 100%. The equation is as follows:

Margin =
1− TailLatency

20
(1)

NumQueries = (Normslnv(
1− Confidence

2
))2

× TailLatency × (1− TailLatency)

Margin2

(2)

Equation 2 provides the number of queries that are neces-

sary to achieve a statistically valid measurement. The math for

determining the appropriate sample size for a latency-bound

throughput experiment is the same as that for determining the

appropriate sample size for an electoral poll given an infinite

electorate where three variables determine the sample size:

tail-latency percentage, confidence, and margin [47].

Table IV shows the query requirements. The total query

count and tail-latency percentile are scenario and task specific.

The single-stream scenario requires 1,024 queries, and the

offline scenario requires 1 query with at least 24,576 samples.

The former has the fewest queries to execute, as we wanted

the run time to be short enough that embedded platforms and

smartphones could complete the benchmarks quickly.

For scenarios with latency constraints, our goal is to ensure

a 99% confidence interval that the constraints hold. As a

result, the benchmarks with more-stringent latency constraints

require more queries in a highly nonlinear fashion. The number

451

of queries is based on the aforementioned statistics and is

rounded up to the nearest multiple of 213.

A 99th-percentile guarantee requires 262,742 queries, which

rounds up to 33 × 213, or 270K. For both multistream and

server, this guarantee for vision tasks requires 270K queries, as

Table V shows. Because a multistream benchmark will process

N samples per query, the total number of samples will be

N× 270K. Machine translation has a 97th-percentile latency

guarantee and requires only 90K queries.

For repeatability, we run the multistream and server scenar-

ios several times. But the multistream scenario’s arrival rate

and query count guarantee a 2.5- to 7.0-hour run time. To strike

a balance between repeatability and run time, we require five

runs for the server scenario, with the result being the minimum

of these five. The other scenarios require one run. We expect

to revisit this choice in future MLPerf versions.

All benchmarks must also run for at least 60 seconds and

process additional queries and/or samples as the scenarios

require. The minimum run time ensures we measure the equi-

librium behavior of power-management systems and systems

that support dynamic voltage and frequency scaling (DVFS),

particularly for the single-stream scenario with few queries.

IV. INFERENCE SUBMISSION SYSTEM

An MLPerf Inference submission system contains a system

under test (SUT), the Load Generator (LoadGen), a data set,

and an accuracy script. In this section we describe these vari-

ous components. Figure 3 shows an overview of an inference

system. The data set, LoadGen, and accuracy script are fixed

for all submissions and are provided by MLPerf. Submitters

have wide discretion to implement an SUT according to their

architecture’s requirements and their engineering judgment.

By establishing a clear boundary between submitter-owned

and MLPerf-owned components, the benchmark maintains

comparability among submissions.

A. System Under Test

The submitter is responsible for the system under test.

The goal of MLPerf Inference is to measure system perfor-

mance across a wide variety of architectures. But realism,

comparability, architecture neutrality, and friendliness to small

submission teams require careful tradeoffs. For instance, some

deployments have teams of compiler, computer-architecture,

and machine-learning experts aggressively co-optimizing the

training and inference systems to achieve cost, accuracy, and

latency targets across a massive global customer base. An

unconstrained benchmark would disadvantage companies with

less experience and fewer ML-training resources.

Therefore, we set the model-equivalence rules to allow

submitters to, for efficiency, reimplement models on different

architectures. The rules provide a complete list of disallowed

techniques and a list of allowed-technique examples. We chose

an explicit blacklist to encourage a wide range of techniques

and to support architectural diversity. The list of examples

illustrates the blacklist boundaries while also encouraging

common and appropriate optimizations.

TABLE V
NUMBER OF QUERIES AND SAMPLES PER QUERY FOR EACH TASK.

MODEL
NUMBER OF QUERIES / SAMPLES PER QUERY

SINGLE-STREAM MULTISTREAM SERVER OFFLINE

IMAGE CLASSIFICATION (HEAVY) 1K / 1 270K / N 270K / 1 1 / 24K
IMAGE CLASSIFICATION (LIGHT) 1K / 1 270K / N 270K / 1 1 / 24K

OBJECT DETECTION (HEAVY) 1K / 1 270K / N 270K / 1 1 / 24K
OBJECT DETECTION (LIGHT) 1K / 1 270K / N 270K / 1 1 / 24K

MACHINE TRANSLATION 1K / 1 90K / N 90K / 1 1 / 24K

Allowed techniques. Examples of allowed techniques in-

clude arbitrary data arrangement as well as different input

and in-memory representations of weights, mathematically

equivalent transformations, approximations (e.g., replacing a

transcendental function with a polynomial), out-of-order query

processing within the scenario’s limits, replacing dense opera-

tions with mathematically equivalent sparse operations, fusing

and unfusing operations, and dynamically switching between

one or more batch sizes.

To promote architecture and application neutrality, we

adopted untimed preprocessing. Implementations may trans-

form their inputs into system-specific ideal forms as an un-

timed operation. Ideally, a whole-system benchmark should

capture all performance-relevant operations. In MLPerf, how-

ever, we explicitly allow untimed preprocessing. There is no

vendor- or application-neutral preprocessing. For example,

systems with integrated cameras can use hardware/software

co-design to ensure that images reach memory in an ideal

format; systems accepting JPEGs from the Internet cannot.

We also allow and enable quantization to many different

numerical formats to ensure architecture neutrality. Submitters

register their numerics ahead of time to help guide accuracy-

target discussions. The approved list includes INT4, INT8,

INT16, UINT8, UINT16, FP11 (1-bit sign, 5-bit mantissa, and

5-bit exponent), FP16, bfloat16, and FP32. Quantization to

lower-precision formats typically requires calibration to ensure

sufficient inference quality. For each reference model, MLPerf

provides a small, fixed data set that can be used to calibrate a

quantized network. Additionally, it offers MobileNet versions

that are prequantized to INT8, since without retraining (which

we disallow) the accuracy falls dramatically.

Prohibited techniques. We prohibit retraining and pruning

to ensure comparability. Although this restriction may fail to

reflect realistic deployment in some cases, the interlocking

requirements to use reference weights (possibly with calibra-

tion) and minimum accuracy targets are most important for

comparability. We may eventually relax this restriction.

To simplify the benchmark evaluation, we disallow caching.

In practice, inference systems cache queries. For example, “I

love you” is one of Google Translate’s most frequent queries,

but the service does not translate the phrase ab initio each

time. Realistically modeling caching in a benchmark, however,

is difficult because cache-hit rates vary substantially with the

application. Furthermore, our data sets are relatively small,

and large systems could easily cache them in their entirety.

We also prohibit optimizations that are benchmark or data-

set aware and that are inapplicable to production environ-

452

Data Set

Fig. 3. MLPerf Inference system under test (SUT) and associated components.
First, the LoadGen requests that the SUT load samples (1). The SUT then
loads samples into memory (2–3) and signals the LoadGen when it is ready
(4). Next, the LoadGen issues requests to the SUT (5). The benchmark
processes the results and returns them to the LoadGen (6), which then outputs
logs for the accuracy script to read and verify (7).

ments. For example, real query traffic is unpredictable, but

for the benchmark, the traffic pattern is predetermined by

the pseudorandom-number-generator seed. Optimizations that

take advantage of a fixed number of queries or that take

the LoadGen implementation into account are prohibited.

Similarly, any optimization employing the statistics of the

performance or accuracy data sets is forbidden.

B. Load Generator

The LoadGen is a traffic generator for MLPerf Inference

that loads the SUT and measures performance. Its behavior is

controlled by a configuration file it reads at the start of the

run. The LoadGen produces the query traffic according to the

rules of the previously described scenarios (i.e., single-stream,

multistream, server, and offline). Additionally, it collects infor-

mation for logging, debugging, and postprocessing the data. It

records queries and responses from the SUT, and at the end

of the run, it reports statistics, summarizes the results, and

determines whether the run was valid. Figure 4 shows how

the LoadGen creates query traffic for each scenario. In the

server scenario, for instance, it issues queries in accordance

with a Poisson distribution to mimic a server’s query-arrival

rates. In the single-stream case, it issues a query to the SUT

and waits for completion of that query before issuing another.

At startup, the LoadGen requests that the SUT load data-set

samples into memory. The SUT may load them into DRAM

as an untimed operation and perform other timed operations as

the rules stipulate. These untimed operations include but are

not limited to compilation, cache warmup, and preprocessing.

The SUT signals the LoadGen when it is ready to receive the

first query; a query is a request for inference on one or more

samples. The LoadGen sends queries to the SUT in accordance

with the selected scenario. Depending on that scenario, it can

submit queries one at a time, at regular intervals, or in a

Poisson distribution. The SUT runs inference on each query

and sends the response back to the LoadGen, which either logs

the response or discards it. After the run, an accuracy script

checks the logged responses to determine whether the model

accuracy is within tolerance.

The LoadGen has two primary operating modes: accuracy

and performance. Both are necessary to validate MLPerf

submissions. In accuracy mode, the LoadGen goes through

Fig. 4. Timing and number of queries from the LoadGen.

the entire data set for the ML task. The model’s task is to run

inference on the complete data set. Afterward, accuracy results

appear in the log files, ensuring the model met the required

quality target. In performance mode, the LoadGen avoids

going through the entire data set, as the system’s performance

can be determined by subjecting it to enough data-set samples.

We designed the LoadGen to flexibly handle changes to the

benchmark suite. MLPerf Inference has an interface between

the SUT and LoadGen so it can handle new scenarios and

experiments in the LoadGen and roll them out to all models

and SUTs without extra effort. Doing so also facilitates

compliance and auditing, since many technical rules about

query arrivals, timing, and accuracy are implemented outside

of submitter code. We achieved this feat by decoupling the

LoadGen from the benchmarks and the internal representations

(e.g., the model, scenarios, and quality and latency metrics).

The LoadGen implementation is a standalone C++ module.

The decoupling allows the LoadGen to support various

language bindings, permitting benchmark implementations in

any language. The LoadGen supports Python, C, and C++

bindings; additional bindings can be added. Another benefit

of decoupling the LoadGen from the benchmark is that the

LoadGen is extensible to support more scenarios, such as a

multitenancy mode where the SUT must continuously serve

multiple models while maintaining QoS constraints.

Moreover, placing the performance-measurement code out-

side of submitter code fits with MLPerf’s goal of end-to-

end system benchmarking. The LoadGen therefore measures

the holistic performance of the entire SUT rather than any

individual part. Finally, this condition enhances the bench-

mark’s realism: inference engines typically serve as black-box

components of larger systems.

C. Data Set

We employ standard and publicly available data sets to

ensure the community can participate. We do not host them

directly, however. Instead, MLPerf downloads the data set

before LoadGen uses it to run the benchmark. Table I lists

the data sets that we selected for each of the benchmarks.

453

D. Accuracy Checker

The LoadGen also has features that ensure the submission

system complies with the rules. In addition, it can self-check

to determine whether its source code has been modified during

the submission process. To facilitate validation, the submitter

provides an experimental config file that allows use of non-

default LoadGen features. Details are in Section V-B.

V. SUBMISSION-SYSTEM EVALUATION

In this section, we describe the submission, review, and

reporting process. Participants can submit results to different

divisions and categories. All submissions are peer reviewed

for validity. Finally, we describe how the results are reported.

A. Result Submissions, Divisions, and Categories

A result submission contains information about the SUT:

performance scores, benchmark code, a system-description

file that highlights the SUT’s main configuration character-

istics (e.g., accelerator count, CPU count, software release,

and memory system), and LoadGen log files detailing the

performance and accuracy runs for a set of task and scenario

combinations. All this data is uploaded to a public GitHub

repository for peer review and validation before release.

MLPerf Inference is a suite of tasks and scenarios that

ensures broad coverage, but a submission can contain a subset

of them. Many traditional benchmarks, such as SPEC CPU,

require submissions for all components. This approach is

logical for a general-purpose processor that runs arbitrary

code, but ML systems are often highly specialized.

Divisions. MLPerf Inference has two divisions for submit-

ting results: closed and open. Participants can send results to

either or both, but they must use the same data set.

The closed division enables comparison of different sys-

tems. Submitters employ the same models, data sets, and

quality targets to ensure comparability across wildly different

architectures. This division requires preprocessing, postpro-

cessing, and a model that is equivalent to the reference imple-

mentation. It also permits calibration for quantization (using

the calibration data set we provide) and prohibits retraining.

The open division fosters innovation in ML systems, algo-

rithms, optimization, and hardware/software co-design. Per-

ticipants must still perform the same ML task, but they may

change the model architecture and the quality targets. This

division allows arbitrary pre- and postprocessing and arbitrary

models, including techniques such as retraining. In general,

submissions are directly comparable neither with each other

nor with closed submissions. Each open submission must

include documentation about how it deviates from the closed

division.

Categories. Following MLPerf Training, participants clas-

sify their submissions into one of three categories on the

basis of hardware and software availability: available; preview;

and research, development, or other systems (RDO). This

categorization helps consumers identify the systems’ maturity

and whether they are readily available (for rent or purchase).

B. Result Review

A challenge of benchmarking inference systems is that

many include proprietary and closed-source components, such

as inference engines and quantization flows, that make peer

review difficult. To accommodate these systems while ensuring

reproducible results that are free from common errors, we

developed a validation suite to assist with peer review. These

validation tools perform experiments that help determine

whether a submission complies with the defined rules.

Accuracy verification. The purpose of this test is to ensure

valid inferences in performance mode. By default, the results

that the inference system returns to the LoadGen are not

logged and thus are not checked for accuracy. This choice

reduces or eliminates processing overhead to allow accurate

measurement of the inference system’s performance. In this

test, results returned from the SUT to the LoadGen are logged

randomly. The log is checked against the log generated in

accuracy mode to ensure consistency.

On-the-fly caching detection. The LoadGen produces

queries by randomly selecting query samples with replacement

from the data set, and inference systems may receive queries

with duplicate samples. This duplication is likely for high-

performance systems that process many samples relative to

the data-set size. To represent realistic deployments, the rules

prohibit caching of queries and intermediate data. The test

has two parts: the first generates queries with unique sam-

ple indices, and the second generates queries with duplicate

sample indices. It measures performance in each case. The

way to detect caching is to determine whether the test with

duplicate sample indices runs significantly faster than the test

with unique sample indices.

Alternate-random-seed testing. Ordinarily, the LoadGen

produces queries on the basis of a fixed random seed. Op-

timizations based on that seed are prohibited. The alternate-

random-seed test replaces the official random seed with alter-

nates and measures the resulting performance.

Custom data sets. In addition to the LoadGen’s validation

features, we use custom data sets to detect result caching.

MLPerf Inference validates this behavior by replacing the

reference data set with a custom data set. We measure the

quality and performance of the system operating on the latter

and compare the results with operation on the former.

C. Result Reporting

MLPerf Inference provides no “summary score.” Bench-

marking efforts often elicit a strong desire to distill the

capabilities of a complex system to a single number and

thereby enable comparison of different systems. But not all

ML tasks are equally important for all systems, and the

job of weighting some more heavily than others is highly

subjective. At best, weighting and summarization are driven

by the submitter catering to customer needs, as some systems

may be designed for specific ML tasks. For instance, a system

may be highly optimized for vision rather than for translation.

In such cases, averaging the results across all tasks makes no

sense, as the submitter may not be targeting those markets.

454

SSD-ResNet-34

MobileNet-v1SSD-
MobileNet-v1

ResNet-50 v1.5

Fig. 5. Results from the closed division. The distribution indicates we selected
representative workloads for the benchmark’s initial release.

VI. BENCHMARK ASSESSMENT

On October 11, we put the inference benchmark to the test.

We received from 14 organizations more than 600 submissions

in all three categories (available, preview, and RDO) across

the closed and open divisions. The results are the most

extensive corpus of inference performance data available to the

public, covering a range of ML tasks and scenarios, hardware

architectures, and software run times. Each has gone through

extensive review before receiving approval as a valid MLPerf

result. After review, we cleared 595 results as valid. In this

section, we assess the closed-division results on the basis of

our inference-benchmark objectives:

• Pick representative workloads for reproducibility, and

allow everyone to access them (Section VI-A).

• Identify usage scenarios for realistic evaluation (Sec-

tion VI-B).

• Set permissive rules that allow submitters to showcase

both hardware and software capabilities (Sections VI-C

and VI-D).

• Describe a method that allows the benchmarks to change

(Section VI-E).

A. Task Coverage

Because we allow submitters to pick any task to evaluate

their system’s performance, the distribution of results across

tasks can reveal whether those tasks are of interest to ML-

system vendors. We analyzed the submissions to determine

the overall coverage. Figure 5 shows the breakdown for

the tasks and models in the closed division. Although the

most popular model was—unsurprisingly—ResNet-50 v1.5, it

was just under three times as popular as GNMT, the least

popular model. This small spread and the otherwise uniform

distribution suggests we selected a representative set of tasks.

In addition to selecting representative tasks, another goal

is to provide vendors with varying quality and performance

targets. The ideal ML model may differ with the use case

(as Figure 1 shows, a vast range of models can target a

given task). Our results reveal that vendors equally supported

Fig. 6. Throughput degradation from server scenario (which has a latency
constraint) for 11 arbitrarily chosen systems from the closed division. The
server-scenario performance for each model is normalized to the performance
of that same model in the offline scenario. A score of 1 corresponds to a
model delivering the same throughput for the offline and server scenarios.
Some systems, including C, D, I, and J, lack results for certain models because
participants need not submit results for all models.

different models for the same task because each model has

unique quality and performance tradeoffs. In the case of object

detection, we saw about the same number of submissions for

both SSD-MobileNet-v1 and SSD-ResNet-34.

B. Scenario Usage

We aim to evaluate systems in realistic use cases—a major

motivator for the LoadGen and scenarios. To this end, Table VI

shows the distribution of results among the various task and

scenario combinations. Across all tasks, the single-stream and

offline scenarios are the most widely used and are also the

easiest to optimize and run. Server and multistream were more

complicated and had longer run times because of the QoS

requirements and more-numerous queries. GNMT garnered no

multistream submissions, possibly because the constant arrival

interval is unrealistic in machine translation. Therefore, it was

the only model and scenario combination with no submissions.

The realistic MLPerf Inference scenarios are novel and

illustrate many important and complex performance consid-

erations that architects face but that studies often overlook.

Figure 6 demonstrates that all systems deliver less throughput

for the server scenario than for the offline scenario owing

to the latency constraint and attendant suboptimal batching.

Optimizing for latency is challenging and underappreciated.

Not all systems handle latency constraints equally well,

however. For example, system B loses about 50% or more

of its throughput for all three models, while system A loses

as much as 40% for NMT, but approximately 10% for the

vision models. The throughput-degradation differences may be

a result of a hardware architecture optimized for low batch size

or more-effective dynamic batching in the inference engine

and software stack—or, more likely, a combination of the

TABLE VI
HIGH COVERAGE OF MODELS AND SCENARIOS.

SINGLE-STREAM MULTISTREAM SERVER OFFLINE

GNMT 2 0 6 11
MOBILENET-V1 18 3 5 11
RESNET-50 V1.5 19 5 10 20

SSD-MOBILENET-V1 8 3 5 13
SSD-RESNET-34 4 4 7 12

TOTAL 51 15 33 67

455

Fig. 7. Results from the closed division. They cover almost every kind of
processor architecture—CPUs, GPUs, DSPs, FPGAs, and ASICs.

two. Even with this limited data, one clear implication is

that a performance comparison with unconstrained latency

has little bearing on a latency-constrained scenario. Therefore,

performance analysis should ideally include both.

Additionally, the performance impact of latency constraints

varies with network type. Across all five systems with NMT

results, the throughput reduction for the server scenario is

39–55%. In contrast, the throughput reduction for ResNet-50

v1.5 varies from 3% to 35% with an average of about 20%,

and the average for MobileNet-v1 is under 10%. The vast

throughput-reduction differences likely reflect some combina-

tion of NMT’s variable text input, more-significant software-

stack optimization, and NMT’s more-complex network archi-

tecture. A second lesson from this data is that the impact of

latency constraints on different models extrapolates poorly.

Even among classification models, the average performance

loss for ResNet-50 v1.5 is approximately double that of

MobileNet-v1.

C. Processor Types and Software Frameworks

A variety of platforms can employ ML solutions, from

fully general-purpose CPUs to programmable GPUs and DSPs,

FPGAs, and fixed-function accelerators. Our results reflect

this diversity. Figure 7 shows that the MLPerf Inference

submissions covered most hardware categories, indicating our

v0.5 benchmark suite and method can evaluate any processor

architecture.

Many ML software frameworks accompany the various

processor types. Table VII shows the frameworks for bench-

marking the hardware platforms. ML software plays a vital

role in unleashing the hardware’s performance. Some run times

are designed to work with certain hardware types to fully

harness their capabilities; employing the hardware without the

corresponding framework may still succeed, but the perfor-

mance may fall short of the hardware’s potential. The table

shows that CPUs have the most framework diversity and that

TensorFlow has the most architectural variety.

D. System Diversity

The submissions cover a broad power and performance

range, from mobile and edge devices to cloud computing. The

performance delta between the smallest and largest inference

systems is four orders of magnitude, or about 10,000×.

TABLE VII
FRAMEWORK VERSUS HARDWARE ARCHITECTURE.

ASIC CPU DSP FPGA GPU

ARM NN X X

FURIOSAAI X

HAILO SDK X

HANGUANG AI X

ONNX X

OPENVINO X

PYTORCH X

SNPE X

SYNAPSE X

TENSORFLOW X X X

TENSORFLOW LITE X

TENSORRT X

Figure 8 shows the results across all tasks and scenarios

except for GNMT (MS), which had no submissions. In cases

such as the MobileNet-v1 single-stream scenario (SS), ResNet-

50 v1.5 (SS), and SSD-MobileNet-v1 offline (O), systems

exhibit a large performance difference (100×). Because these

models have many applications, the systems that target them

cover everything from low-power embedded devices to high-

performance servers. GNMT server (S) exhibits much less

performance variation among systems.

The broad performance range implies that the tasks we

initially selected for MLPerf Inference v0.5 are general enough

to represent many use cases and market segments. The wide

array of systems also indicates that our method (the LoadGen,

metrics, etc.) is widely applicable.

E. Open Division

We received 429 results in the less restrictive open division.

A few highlights include 4-bit quantization to boost perfor-

mance, exploration of various models (instead of the reference

model) to perform the task, and high throughput under latency

bounds tighter than what the closed-division rules stipulate.

We also saw submissions that pushed the limits of mobile-

chipset performance. Typically, vendors use one accelerator

at a time. We are seeing instances of multiple accelerators

working concurrently to deliver high throughput in a multi-

stream scenario—a rarity in conventional mobile situations.

Together these results show the open division is encouraging

the industry to push system limits.

VII. LESSONS LEARNED

Over the course of a year we have learned several lessons

and identified opportunities for improvement, which we

present here.

A. Models: Breadth vs. Use-Case Depth

Balancing the breadth of applications (e.g., image recog-

nition, objection detection, and translation) and models (e.g.,

CNNs and LSTMs) and the depth of the use cases (Table II) is

important to industry. We therefore implemented 4 versions of

each benchmark, 20 in total. Limited resources and the need

for speedy innovation prevented us from including more ap-

plications (e.g., speech recognition and recommendation) and

456

Fig. 8. Performance for different models in the single-stream (SS), multi-
stream (MS), server (S), and offline (O) scenarios. Scores are relative to the
performance of the slowest system for the particular scenario.

models (e.g., Transformers [50], BERT [16], and DLRM [38],

[19]), but we aim to add them soon.

B. Metrics: Latency vs. Throughput

Latency and throughput are intimately related, and consider-

ing them together is crucial: we use latency-bounded through-

put (Table III). A system can deliver excellent throughput yet

perform poorly when latency constraints arise. For instance,

the difference between the offline and server scenarios is

that the latter imposes a latency constraint and implements

a nonuniform arrival rate. The result is lower throughput

because large input batches become more difficult to form. For

some systems, the server scenario’s latency constraint reduces

performance by as little as 3% (relative to offline); for others,

the loss is much greater (50%).

C. Data Sets: Public vs. Private

The industry needs larger and better-quality public data

sets for ML-system benchmarking. After surveying various

industry and academic scenarios, we found for the SSD-

large use case a wide spectrum of input-image sizes, rang-

ing roughly from 200x200 to 8 MP. We settled on two

resolutions as use-case proxies: small images, where 0.09

MP (300x300) represents mobile and some data-center ap-

plications, and large images, where 1.44 MP (1,200x1,200)

represents robotics (including autonomous vehicles) and high-

end video analytics. In practice, however, SSD-large employs

an upscaled (1,200x1,200) COCO data set (Table I), as dictated

by the lack of good public detection data sets with large

images. Some such data sets exist, but they are less than

ideal. ApolloScape [51], for example, contains large images,

but it lacks bounding-box annotations and its segmentation

annotations omit labels for some object pixels (e.g., when an

object has pixels in two or more noncontiguous regions, owing

to occlusion). Generating the bounding-box annotations is

therefore difficult in these cases. The Berkeley DeepDrive [56]

images are lower in resolution (720p). We need more data-set

generators to address these issues.

D. Performance: Modeled vs. Measured

Although it is common practice, characterizing a network’s

computational difficulty on the basis of parameter size or

operator count (Figure 1) can be an oversimplification. For

example, 10 systems in the offline and server scenarios

computed the performance of both SSD-ResNet-34 and SSD-

MobileNet-v1. The former requires 175× more operations per

image, but the actual throughput is only 50–60× less. This

consistent 3× difference between the operation count and the

observed performance shows how network structure can affect

performance.

E. Process: Audits and Auditability

Because submitters can reimplement the reference bench-

mark to maximize their system’s capabilities, the result-review

process (Section V-B) was crucial to ensuring validity and

reproducibility. We found about 40 issues in the approximately

180 results from the closed division. We ultimately released

only 166 of these results. Issues ranged from failing to

meet the quality targets (Table I), latency bounds (Table III),

and query requirements (Table V) to inaccurately interpret-

ing the rules. Thanks to the LoadGen’s accuracy checkers

(Section IV-D) and submission-checker scripts, we identified

many issues automatically. The checkers also reduced the

burden so only about three engineers had to comb through

the submissions. In summary, since the diversity of options

at every level of the ML inference stack is complicated

(Figure 2), we found auditing and auditability to be necessary

for ensuring result integrity and reproducibility.

VIII. PRIOR ART IN AI/ML BENCHMARKING

MLPerf strives to incorporate and build on the best aspects

of prior work while also including community input.

AI Benchmark. AI Benchmark [23] is arguably the first

mobile-inference benchmark suite. Its results and leaderboard

focus on Android smartphones and only measure latency. The

suite provides a summary score, but it fails to explicitly specify

quality targets. We aim at a variety of devices (our submissions

range from IoT devices to smartphones and edge/server-scale

systems) as well as four scenarios per benchmark.

EEMBC MLMark. EEMBC MLMark [17] measures the

performance and accuracy of embedded inference devices. It

also includes image-classification and object-detection tasks,

as MLPerf does, but it lacks use-case scenarios. MLMark

measures performance at explicit batch sizes, whereas MLPerf

allows submitters to choose the best batch sizes for different

scenarios. Also, the former imposes no target-quality restric-

tions, whereas the latter does impose restrictions.

Fathom. Fathom [2] provides a suite of models that incor-

porate several layer types (e.g., convolution, fully connected,

and RNN). Still, it focuses on throughput rather than accuracy.

Like Fathom, we include a suite of models that comprise

457

various layers. Compared with Fathom, MLPerf provides

both PyTorch and TensorFlow reference implementations for

optimization, and it introduces a variety of inference scenarios

with different performance metrics.

AI Matrix. AI Matrix [3] is Alibaba’s AI-accelerator

benchmark. It uses microbenchmarks to cover basic operators

such as matrix multiplication and convolution, it measures

performance for fully connected and other common layers,

it includes full models that closely track internal applications,

and it offers a synthetic benchmark to match the characteristics

of real workloads. MLPerf has a smaller model collection and

focuses on simulating scenarios using the LoadGen.

DeepBench. Microbenchmarks such as DeepBench [8]

measure the library implementation of kernel-level operations

(e.g., 5,124×700×2,048 GEMM) that are important for per-

formance in production models. They are useful for efficient

development but fail to address the complexity of full models.

TBD (Training Benchmarks for DNNs). TBD [57] is

a joint project of the University of Toronto and Microsoft

Research that focuses on ML training. It provides a wide

spectrum of ML models in three frameworks (TensorFlow,

MXNet, and CNTK), along with a powerful tool chain for their

improvement. It focuses on evaluating GPU performance and

only has one full model (Deep Speech 2) that covers inference.

DAWNBench. DAWNBench [14] was the first multi-entrant

benchmark competition to measure the end-to-end perfor-

mance of deep-learning systems. It allowed optimizations

across model architectures, optimization procedures, software

frameworks, and hardware platforms. DAWNBench inspired

MLPerf, but we offer more tasks, models, and scenarios.

IX. CONCLUSION

MLPerf Inference’s core contribution is a comprehensive

framework for measuring ML inference performance across a

spectrum of use cases. We briefly summarize the three main

aspects of inference benchmarking here.

Performance metrics. To make fair, apples-to-apples com-

parisons of AI systems, consensus on performance metrics

is critical. We crafted a collection of such metrics: latency,

latency-bounded throughput, throughput, and maximum num-

ber of inferences per query—all subject to a predefined accu-

racy target and some likelihood of achieving that target.

Latency or inference-execution time is often the metric

that system and architecture designers employ. Instead, we

identify latency-bounded throughput as a measure of inference

performance in industrial use cases, representing data-center

inference processing. Although this metric is common for data-

center CPUs, we introduce it for data-center ML accelerators.

Prior work often uses throughput or latency; the formulation

in this paper reflects more-realistic deployment constraints.

Accuracy/performance tradeoff. ML systems often trade

off between accuracy and performance. Prior art varies widely

concerning acceptable inference-accuracy degradation. We

consulted with domain experts from industry and academia

to set both the accuracy and the tolerable degradation thresh-

olds for MLPerf Inference, allowing distributed measurement

and optimization of results to tune the accuracy/performance

tradeoff. This approach standardizes AI-system design and

evaluation, and it enables academic and industrial studies,

which can now use the accuracy requirements of MLPerf

Inference workloads to compare their efforts to industrial

implementations and the established accuracy standards.
Evaluation of AI inference accelerators. An important

contribution of this work is identifying and describing the

metrics and inference scenarios (server, single-stream, mul-

tistream, and offline) in which AI inference accelerators are

useful. An accelerator may stand out in one category while

underperforming in another. Such a degradation owes to

optimizations such as batching (or the lack thereof), which

is use-case dependent. MLPerf introduces batching for three

out of the four inference scenarios (server, multistream, and

offline) across the five networks, and these scenarios can

expose additional optimizations for AI-system development

and research.
ML is still evolving. To keep pace with the changes, we es-

tablished a process to maintain MLPerf [36]. We are updating

the ML tasks and models for the next submission round while

sticking to the established, fundamental ML-benchmarking

method we describe in this paper. Nevertheless, we have

much to learn. The MLPerf organization welcomes input and

contributions; please visit https://mlperf.org/get-involved.

X. ACKNOWLEDGEMENTS

MLPerf Inference is the work of many individuals from

numerous organizations, including the authors who led the

benchmark’s development and the submitters who produced

the first large set of reproducible benchmark results. Both

groups were necessary to create a successful industry bench-

mark. The list of submitters is at https://arxiv.org/abs/1911.

02549. We are thankful for the feedback from anonymous

reviewers and appreciate the advice and input of Cliff Young.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in OSDI, vol. 16, 2016.

[2] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference Workloads for Modern Deep Learning Methods,” in IEEE
International Symposium on Workload Characterization (IISWC), 2016.

[3] Alibaba, “Ai matrix.” https://aimatrix.ai/en-us/, Alibaba, 2018.
[4] D. Amodei and D. Hernandez, “Ai and compute,” https://blog.openai.

com/ai-and-compute/, OpenAI, 2018.
[5] Apple, “Core ml: Integrate machine learning models into your app,”

https://developer.apple.com/documentation/coreml, Apple, 2017.
[6] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-

volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39,
no. 12, 2017.

[7] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”
https://github.com/onnx/onnx, 2019.

[8] Baidu, “DeepBench: Benchmarking Deep Learning Operations on Dif-
ferent Hardware,” https://github.com/baidu-research/DeepBench, 2017.

[9] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, 2018.

[10] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

458

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives for
deep learning,” CoRR, vol. abs/1410.0759, 2014. [Online]. Available:
http://arxiv.org/abs/1410.0759

[12] F. Chollet et al., “Keras,” https://keras.io, 2015.
[13] F. Chollet, “Xception: Deep learning with depthwise separable convo-

lutions,” in Proceedings of Conference on Computer Vision and Pattern
Recognition, 2017.

[14] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “DAWNBench: An
End-to-End Deep Learning Benchmark and Competition,” NeurIPS ML
Systems Workshop, 2017.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] EEMBC, “Introducing the eembc mlmark benchmark,” https://www.
eembc.org/mlmark/index.php, Embedded Microprocessor Benchmark
Consortium, 2019.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014.

[19] U. Gupta, X. Wang, M. Naumov, C. Wu, B. Reagen, D. Brooks,
B. Cottel, K. M. Hazelwood, B. Jia, H. S. Lee, A. Malevich,
D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The
architectural implications of facebook’s dnn-based personalized
recommendation,” CoRR, vol. abs/1906.03109, 2019. [Online].
Available: http://arxiv.org/abs/1906.03109

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of Conference on Computer Vision and
Pattern Recognition, 2016.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[22] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of Computer Vision and Pattern Recognition, 2018.

[23] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu,
L. Xu, and L. Van Gool, “Ai benchmark: All about deep learning on
smartphones in 2019,” arXiv preprint arXiv:1910.06663, 2019.

[24] Intel, “Intel distribution of openvino toolkit,” https://software.intel.com/
en-us/openvino-toolkit, Intel, 2018.

[25] Intel, “Math kernel library,” https://software.intel.com/en-us/mkl, 2018.
[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture
for Fast Feature Embedding,” in ACM International Conference on
Multimedia, 2014.

[27] D. Kanter, “Supercomputing 19: Hpc meets machine learning,” https://
www.realworldtech.com/sc19-hpc-meets-machine-learning/, real world
technologies, 11 2019.

[28] D. S. Khudia, P. Basu, and S. Deng, “Open-sourcing fbgemm
for state-of-the-art server-side inference,” https://engineering.fb.com/ml-
applications/fbgemm/, Facebook, 2018.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012.

[30] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi,
R. Sarokin, A. Kulik, and M. Grundmann, “On-device neural net
inference with mobile gpus,” arXiv preprint arXiv:1907.01989, 2019.

[31] K. Lee, V. Rao, and W. C. Arnold, “Accelerating facebook’s infras-
tructure with application-specific hardware,” https://engineering.fb.com/
data-center-engineering/accelerating-infrastructure/, Facebook, 3 2019.

[32] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” The International Journal of Robotics Research,
vol. 37, no. 4-5, 2018.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014.

[34] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016.

[35] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, B. Jia,
D. Kang, D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S. John, C.-J.
Wu, L. Xu, C. Young, and M. Zaharia, “Mlperf training benchmark,”
arXiv preprint arXiv:1910.01500, 2019.

[36] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang et al., “Mlperf:
An industry standard benchmark suite for machine learning perfor-
mance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[37] MLPerf, “ResNet in TensorFlow,” https://github.com/mlperf/training/
tree/master/image classification/tensorflow/official, 2019.

[38] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: http://arxiv.org/abs/1906.
00091

[39] NVIDIA, “Nvidia tensorrt: Programmable inference accelerator,” https:
//developer.nvidia.com/tensorrt, NVIDIA.

[40] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[42] M. Post, “A call for clarity in reporting bleu scores,” arXiv preprint
arXiv:1804.08771, 2018.

[43] Principled Technologies, “Aixprt community preview,” https://www.
principledtechnologies.com/benchmarkxprt/aixprt/, 2019.

[44] Qualcomm, “Snapdragon neural processing engine sdk reference guide,”
https://developer.qualcomm.com/docs/snpe/overview.html, Qualcomm.

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of Conference on Computer Vision and Pattern Recognition, 2018.

[46] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM, 2016.

[47] A. Tamhane and D. Dunlop, “Statistics and data analysis: from elemen-
tary to intermediate,” Prentice Hall, 2000.

[48] S. Tang, “Ai-chip,” https://basicmi.github.io/AI-Chip/, 2019.
[49] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation

open source framework for deep learning,” in Proceedings of workshop
on machine learning systems (LearningSys) in Neural Information
Processing Systems (NeurIPS), vol. 5, 2015.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017.

[51] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The
apolloscape open dataset for autonomous driving and its application,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[52] WMT, “First conference on machine translation,” 2016. [Online].
Available: http://www.statmt.org/wmt16/

[53] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[54] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of Conference
on Computer Vision and Pattern Recognition, 2017.

[55] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor fusion
for 3d bounding box estimation,” in Proceedings of Conference on
Computer Vision and Pattern Recognition, 2018.

[56] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving video database with scalable annotation
tooling,” arXiv preprint arXiv:1805.04687, 2018.

[57] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,
B. Schroeder, and G. Pekhimenko, “Benchmarking and analyzing deep
neural network training,” in IEEE International Symposium on Workload
Characterization (IISWC), 2018.

459

